Mass Preserving Mappings and Image Registration
نویسندگان
چکیده
Image registration is the process of establishing a common geometric reference frame between two or more data sets from the same or different imaging modalities possibly taken at different times. In the context of medical imaging and in particular image guided therapy, the registration problem consists of finding automated methods that align multiple data sets with each other and with the patient. In this paper we propose a method of mass preserving elastic registration based on the Monge–Kantorovich problem of optimal mass transport.
منابع مشابه
Mass preserving image registration for lung CT
This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated into a standard image registration framework with a composition of a global affine and several free-f...
متن کاملBilateral Regularization in Reproducing Kernel Hilbert Spaces for Discontinuity Preserving Image Registration
The registration of abdominal images is an increasing field in research and forms the basis for studying the dynamic motion of organs. Particularly challenging therein are organs which slide along each other. They require discontinuous transform mappings at the sliding boundaries to be accurately aligned. In this paper, we present a novel approach for discontinuity preserving image registration...
متن کاملConformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملCommon fixed point results for graph preserving mappings in parametric $N_b$-metric spaces
In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of graph preserving mappings in parametric $N_b$-metric spaces. As some consequences of this study, we obtain several important results in parametric $b$-metric spaces, parametric $S$-metric spaces and parametric $A$-metric spaces. Finally, we provide some illustrative examples to ...
متن کاملA Lagrangian Gauss-Newton-Krylov Solver for Mass- and Intensity-Preserving Diffeomorphic Image Registration
We present an efficient solver for diffeomorphic image registration problems in the framework of Large Deformations Diffeomorphic Metric Mappings (LDDMM). We use an optimal control formulation, in which the velocity field of a hyperbolic PDE needs to be found such that the distance between the final state of the system (the transformed/transported template image) and the observation (the refere...
متن کامل